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SURFACE FAILURE OF ALUMINA BALLS DUE TO 

REPEATED STRESSES APPLIED IN ROLLING 

CONTACT AT TEMPERATURES TO 2000' F 

by Richard J. Parker, Salvatore J. Grisaffe, 
and Erwin V. Zaretsky 

L e w i s  Research Center 

SUMMARY 

The f i v e - b a l l  f a t igue  t e s t e r  w a s  used t o  study the  behavior of alumina 
b a l l s  under repeated s t r e s s e s  appl ied i n  r o l l i n g  contact.  
cold-pressed-and-sintered 1/2-inch alumina b a l l s  were t e s t e d  a t  80° and 700' F, 
maximum Hertz s t r e s s e s  of 250,000 t o  650,000 p s i ,  a contact  angle of 20°, and 
a shaf t  speed of 950 rpm with a mineral o i l  lubr icant .  

Hot-pressed and 

F a i l u r e  appearance i n  alumina w a s  unlike fa t igue  p i t s  found i n  bearing 
s t e e l s  and a c r y s t a l l i z e d - g l a s s  ceramic. 
eroded area approximately 1 m i l  deep progressing slowly from a very s m a l l  p i t  
t o  one spanning the  t r a c k  width. Fa i lure  appearance and r a t e  of progression 
were s i m i l a r  f o r  hot-pressed and cold-pressed-and-sintered alumina. 

A t y p i c a l  f a i l u r e  w a s  a shallow 

Tests  a t  80' F with mineral o i l  l u b r i c a t i o n  over a range of s t r e s s e s  show 
t h a t  l i f e  v a r i e s  inversely with s t r e s s  r a i s e d  t o  a power t h a t  ranges from 9 . 4  
t o  10.8 f o r  the  hot-pressed alumina and from 6 .0  t o  8 . 1  f o r  cold-pressed-and- 
s in te red  alumina. The load capaci ty  of hot-pressed alumina a t  80° F w a s  one- 
f i f t e e n t h  t h a t  of a t y p i c a l  bearing s t e e l ,  seven t imes t h a t  of cold-pressed- 
and-sintered alumina, and about 15 percent grea te r  than a c r y s t a l l i z e d - g l a s s  
ceramic. 

Tests  showed t h a t  both types of alumina had shor te r  l i v e s  and lower load 
c a p a c i t i e s  a t  a race temperature of 700' F than they d i d  a t  80' F; these  de- 
creases  were a t t r i b u t e d  t o  decreased lubr icant  v i s c o s i t y  w i t h  increased temper- 
a ture .  F a i l u r e  appearance and r a t e  of progression a t  700° F were similar t o  
those a t  80° F f o r  both hot-pressed and cold-pressed-and-sintered alumina. 

Preliminary t e s t s  a t  2000' F and a maximum Hertz s t r e s s  of 341,000 p s i  
with molybdenum d i s u l f i d e  (MoS2)-argon (Ar) m i s t  l u b r i c a t i o n  ind ica te  t h a t  
alumina i s  capable of s a t i s f a c t o r y  ro l l ing-contac t  operat ion under these  con- 
d i t i ons .  The f a i l u r e  appearance of hot-pressed alumina at  2000' F appears t o  
be similar t o  t h a t  a t  80° F. 



INTRODUCTION 

Advancing technology has created a need f o r  r e l i a b l e  bearings t h a t  a r e  
capable of operating a t  elevated temperatures f o r  long per iods of time. Since 
many aerospace appl ica t ions  d i c t a t e  operating temperatures t h a t  a r e  beyond t h e  
useful  range of today ' s  fe r rous  and nonferrous bearing mater ia ls ,  t he  more 
re f rac tory  metals and compounds must be considered. Alumina i s  such a mater ia l  
of i n t e re s t .  

The se lec t ion  of alumina as a mater ia l  t o  be invest igated w a s  based on the  
r e l a t i v e l y  la rge  amount of information ava i lab le  on i t s  physical  p roper t ies ,  
which ind ica tes  t h a t  the  mater ia l  has  a high degree of hardness, a high melting 
poin t ,  a high modulus of e l a s t i c i t y ,  and a high compressive s t rength.  Such 
proper t ies  ind ica te  t h a t  alumina has considerable promise as a high-temperature 
bearing mater ia l .  Typical values of t he  physical  p roper t ies  of alumina are 
shown i n  t h e  sect ion MATERIALS. 

Data reported i n  references 1 and 2 ind ica te  t h a t ,  i n  both s l i d ing  and 
r o l l i n g  contact a t  temperatures up t o  120° F, alumina exh ib i t s  f r i c t i o n  and 
wear c h a r a c t e r i s t i c s  somewhat s i m i l a r  to those of conventional bearing s t e e l s  
and a l loys  over t he  same temperature range. 

Fused alumina (96.0 percent A1203) b a l l s  were run unlubricated under os-  
c i l l a t o r y  motion on several  p l a t e  mater ia l s  a t  temperatures from 600° to 
1200' F and a t  maximum Hertz s t r e s ses  from 637,000 t o  1,012,000 p s i  ( r e f .  1). 
The wear i n  a l l  t e s t s  w a s  l i g h t ,  bu t  i n  some t e s t s  a t  high loads t h e  b a l l s  
f ractured.  (Tracture a t  such severe s t r e s ses  would not be unexpected.) 

The coe f f i c i en t  of f r i c t i o n  of alumina s l id ing  unlubricated on several  
mater ia ls  a t  temperatures up t o  1600' F i s  comparable t o  t h a t  of M-2 s t e e l  
s l i d ing  unlubricated on the  same mater ia ls  a t  temperatures up to 1000° F 
( r e f .  2). 
ence between the  f r i c t i o n  and wear c h a r a c t e r i s t i c s  of hot-pressed and cold- 
pressed-and-sintered (here inaf te r  ca l l ed  cold-pressed) alumina s l id ing  on 
e i t h e r  M-2 s t e e l  a t  1000° F or Inconel X a t  1600' F. 

Further da ta  reported i n  reference 2 ind ica te  no e s s e n t i a l  d i f f e r -  

I n  view of the  reported l i t e r a t u r e  on both the  physical p roper t ies  and the  
f r i c t i o n  and wear proper t ies  of alumina, it can be concluded t h a t  t h i s  mater ia l  
i s  a candidate bearing mater ia l  f o r  rolling-element bearings a t  temperatures of 
16OOOF (and possibly higher) .  
to examine the  e f f e c t s  of temperature and s t r e s s  on the surface f a i l u r e  of both 
hot-pressed and cold-pressed alumina b a l l  specimens under repeated s t r e s ses  
applied i n  r o l l i n g  contact.  Tests were conducted with l/Z-inch-diameter b a l l  
specimens i n  a f i v e - b a l l  f a t igue  t e s t e r  a t  maximum Hertz s t r e s ses  of 250,000 to 
650,000 p s i ,  a shaf t  speed of 950 rpm, a contact angle of 20°, and a t  80° and 
700° F with a highly re f ined  naphthenic mineral o i l  as the  lubr icant .  

Thus, t he  object ive of t h i s  inves t iga t ion  w a s  

Preliminary rol l ing-contact  t e s t s  were a l s o  conducted on both types of 
alumina b a l l s  i n  a modified f i v e - b a l l  t e s t e r  a t  450 rpm and 2000' F with molyb- 
denum d i su l f ide  (MoSZ)-argon ( A r )  m i s t  lubr icat ion.  

2 



The data a t  80' F obtained i n  t h i s  inves t iga t ion  a re  compwed with the  
da ta  f o r  s t e e l  b a l l  specimens. 
mater ia l  were obtained with the  same batches of mater ia l  and 1Libricant. 

All. experimental r e s u l t s  f o r  a given type of 

MATERIALS 

Some t y p i c a l  proper t ies  of alumina a r e  l i s t e d  i n  t a b l e  I. -These proper- 
t i e s  a r e  not measured proper t ies  of p a r t i c u l a r  materials used i n  these tests. 

TABLE I. - TYPICAL PROPERTIES OF ALUMINA (REF. 3) 

anc e 
Pure 
i s  i 

Property 

Melting poin t ,  9 

Vapor p re s su re ,  mm Hg 

Mean c o e f f i c i e n t  of thermal 
expansion, i n .  / ( i n .  )(OF) 

(cal)(cm)/(cm')(sec)(Oc) 
Thermal conduc t iv i ty ,  

Compressive s t rength ,  p s i  

Tens i l e  s t r e n g t h ,  p s i  

Young's modulus, p s i  

Temperature, 
OF 

0 

7 00 

2000 

ao 

752 

2012 

80 

2012 

ao 

2012 

Value I I 
5659 t o  3723 

0 . 7 2  I 

~41x10 

I n  addi t ion t o  these propert ies ,  alumina has good thermal shock r e s i s t -  

form (a9 percent Alz03). An undesirable property 02 alumina, however, 
, i s  very hard (9+ on Moh's s ca l e ) ,  and i s  e a s i l y  obtained i n  a r e l a t i v e l y  

t s  very low d u c t i l i t y .  

Both hot-pressed and cold-pressed alumina were selected f o r  t h i s  study. 
The mater ia ls  were fabr ica ted  i n t o  rough blanks and f in i shed  i n t o  1/2-inch- 
diameter b a l l  specimens of grade 25 spec i f ica t ion  (0.000025-in. spherici ty ,  
0.000050-in. uniformity).  

Both types of alumina were 99 percent aluminum oxide (A1203) (according t o  
t h e  manufacturers). A s  determined by X-ray d i f f r a c t i o n  a t  the  Lewis Research 
Center, the  t r a c e  impuri t ies  were c h i e f l y  magnesium, s i l i con ,  and i ron  i n  the  
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hot-pressed alumina, and magnesium, silicon, and calcium in the cold-pressed 
alumina. The hot-pressed specimens were gray which is believed to be caused by 
a complex spinel phase. 
phase has a composition near that of nickel aluminate (NiO * AI-203). The cold- 
pressed-alumina specimens varied from a nearly pure white to a very light cream 
color. 

X-ray diffraction indicates that this complex spinel 

Difficulty was encountered in obtaining a good surface finish on the cold- 
pressed specimens. Many shallow pits as wide as 0.003 inch were observed at a 
magnification of 15 diameters on the surface of the as-received balls. The 
number and size of these pits varied among specimens. 
the hot-pressed specimens was better. 
on these specimens; those that were observed were similar in appearance to 
those on the cold-pressed specimens but smaller in size. 
metallurgically polished cross sections of the two materials are shown in fig- 
ure 1. 

The surface finish on 
Very few pits were observed (at 15 diam) 

Photomicrographs of 

The pores in the cold-pressed alumina are larger, which may account for 

(a) Hot-pressed alumina. (b) Cold-pressed alumina. 

Figure 1. - Photomicrograph of section of a lumina ball specimen, X60. 

the difference in surface finish. 
alumina used in these tests are 0.6 and 4.3 percent, respectively. 
ues were determined by water-displacement measurements. 

The porosities of the hot- and cold-pressed 
These val- 

APPARATUS 

Five-Ball Fatigue Tester With Air-Bearing Support 

The five-ball fatigue tester used in this investigation is described in 
detail in reference 4. Figure 2(a) is a section view of this tester. The test 
assembly (fig. 2(b)) consists of a test specimen pyramided on four lower 
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1 Load 
Drive spindle -. 

Resistance heater-, %-Lubricant 

(a) Section view showing air-bearing support. (b) Test assembly. 

Figure 2. - Five-ball fatigue tester. 

support bal ls ,  posit ioned by a separator and f r e e  t o  r o t a t e  i n  an angular con- 
t a c t  raceway. Specimen loading and dr ive  a r e  applied through a v e r t i c a l  spin- 
d l e  t h a t  i s  notched a t  i t s  lower end t o  f i t  a tongue cu t  i n  the  t e s t  specimen. 
Loading w a s  accomplished by dead weights ac t ing  on the  spindle through a load 
a r m .  Contact load i s  a funct ion of t h i s  load and the  contact angle. For every 
revolut ion of the  dr ive  shaf t ,  t he  t e s t  specimen receives  three  s t r e s s  cycles.  

The t e s t  assembly i s  supported by an  a i r  bearing t h a t  permits prec ise  
hor izonta l  alinement. The t e s t  temperature w a s  measured a t  the  outside diam- 
e t e r  of t he  race and w a s  maintained by e l e c t r i c a l  res i s tance  elements heat ing 
the  ambient air. I n  t e s t s  a t  80' and 700' F, t h e  b a l l  specimens were lubr ica-  
t ed  with a highly re f ined  naphthenic mineral o i l  introduced i n  m i s t  form. The 
lubr icant  m i s t  w a s  heated t o  t e s t  specimen temperature by a res i s tance  heater  

wrapped around the  lub r i ca to r  tube. 
The support b a l l  mater ia l  w a s  52100 
s t e e l  f o r  the  80° F t e s t s  and M-50 
s t e e l  for t he  700' F t e s t s .  

High-Temperature Five-Ball 

Fatigue Tester 

The modified f i v e - b a l l  t e s t e r  
used for the  2000° F t e s t s  i s  shown i n  
f igu re  2 ( c  ) . The nickel-base-alloy 
housing i s  supported by rods held i n  
f l e x i b l e  rubber mounts. Minor m i s -  
alinement s and v ibra t ions  a r e  ab sorbed 
by these  mounts. Operating tempera- 
t u r e s  up t o  2000° F a r e  maintained by 
induction heat ing c o i l s  wound around 

(c) Modified for tests at 20000 F. 

Figure 2. - Concluded. Five-ball fatigue tester. 



t h e  t e s t  housing. Shaft  speeds up to 450 rpm are con t ro l l ed  by a va r i ab le -  
speed drive u n i t .  

Lubrication i s  accomplished with a d ry  powder l u b r i c a n t  c a r r i e d  i n  a n  in-  
e r t  gas i n j e c t e d  i n t o  t h e  t e s t  assembly. For these  tests,  MoS2 powder and high 
p u r i t y  argon were used. The support ba l l s  w e r e  l/Z-inch-diameter, grade 25, 
hot-pressed alumina. Race and separator  materials were cold-pressed alumina 
and Hastelloy X, respect ively.  

PROCEDURE 

Before t e s t i n g ,  t h e  alumina specimens were kept i n  a clean, dry atmos- 
phere. The cold-pressed specimens were cleaned i n  an  u l t r a son ic  c leaner  t o  re- 
move ma te r i a l  l e f t  i n  t h e  surface p i t s  during f ab r i ca t ion .  Subsequently, t h e  
t e s t  specimens were inspected a t  a magnification of 15 diameters, and the  s i ze  
and the  number of i n i t i a l  surface p i t s  i n  the  running t r a c k  area, i f  any, w e r e  
r ec orded . 

A t  t h e  s tar t  of a t e s t ,  t h e  t e s t  specimens and t h e  support b a l l s  w e r e  
coated with lub r i can t  and i n s t a l l e d  i n  t h e  t e s t  assembly. Loading w a s  subse- 
quently applied, and t h e  t e s t  sha f t  w a s  brought up to operating speed. I n  t h e  
700' and 2000° F t e s t s ,  t h e  raceway w a s  heated t o  operating temperature before 
t h e  t e s t  w a s  started. Periodic  inspect ions of t h e  test-specimen running t r a c k  
were made a t  a magnification of 15 diameters, and observations were recorded. 
The time i n t e r v a l  between inspect ions var ied with t h e  s t r e s s  level  a t  which t h e  
t e s t  w a s  run and with t h e  observed ra te  of growth of a fa i lure  p i t .  A specimen 
w a s  considered f a i l e d  when a p i t  reached t h e  f u l l  width of the  running t r ack .  
The e n t i r e  t e s t  assembly w a s  cleaned and inspected between tests,  and new sup- 
p o r t  b a l l s  were i n s t a l l e d  before t h e  start  of another t es t .  

RESULTS AND DISCUSSION 

Rolling-Contact L i f e  Tests  

These t es t s  were conducted with cold- and hot-pressed alumina b a l l s ,  i n  
t h e  f i v e - b a l l  f a t i g u e  t e s t e r  described previously,  a t  a sha f t  speed of 950 rpm, 
a contact  angle of 20°, and race temperatures of 80' and 700° F. 
t e s t s  a t  t he  previously s t a t e d  conditions were made with each material t o  de- 
termine t h e  s t r e s s e s  a t  which these  specimens could be t e s t e d  to produce a 
f a i l u r e  within a reasonable time. I n  order to determine t h e  stress-l ife r e l a -  
t i o n  f o r  alumina, t h r e e  and fou r  s t r e s s e s  were chosen f o r  t h e  cold- and t h e  
hot-pressed mater ia ls ,  respect ively.  An intermediate s t r e s s  w a s  chosen f o r  
each material f o r  tes ts  a t  700' F. 

Step-load 

The l i f e  data were t r e a t e d  s t a t i s t i c a l l y  according to t he  methods of ref-  
erence 5 and p l o t t e d  on Weibull coordinates.  
through each a r r a y  of p o i n t s  by the  method of l e a s t  squares. 
80° F a r e  shown i n  f igu re  3. 
table  I1 f o r  both t h e  80° and 700' F tes ts .  
decrease i n  l i f e  with increasing contact s t r e s s .  

A s t r a i g h t  l i n e  w a s  drawn 
The r e s u l t s  a t  

The 10- and 50-percent l i v e s  a r e  tabulated i n  
The l i f e  da t a  show an expected 
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.66 

.50 

.19 

.15 

TABLE 11. - LIFE AND LOAD CAPACITY RESULTS WITH HOT- 

AND COLD-PRESSED ALUMINA BALL SPECDENS AT 80' 

AND 700' F IN FIWC-BU FATIGUE TESTEE 

[ S h a f t  speed, 950 rpm; contac t  angle ,  
20'; l u b r i c a n t ,  minera l  o i l .  ] 

5. OX106 

2.6 

Maximum 
Hertz s t r e s s ,  

p s i  

500,000 

550,000 

600,000 

650,000 

550,000 

250,000 

300,000 

350,000 

300,000 

Rae e 
temper- 
a t u r e ,  

% 

80 

700 

80 

1 
7 00 

Ten- 
percent  

l i f e ,  
s t r e s s  
c y c l e s  

F i f t y -  
percent  

l i f e ,  
s t r e s s  
cyc l e  s 

We i b u l l  
s lope 

2. 0 5 ~ 1 0 ~  

.72 

.27 

.052 

7.1x106 

1.59 

.48 

.21 

F 

~ 

1.5 

2.3 

3.3 

1 .4  

B a l l  
normal 

load,  
lb 

24.1 

32.1 

41.8 

53.2 

32.1 

3.02 

5.21 

8.28 

5.21 

Load- 
capac i ty ,  

lb 

31.3 

28.1 

33.5 

31.3 

17.5 

p' r 1 s '  

4.32 

4.43 

4. 30 

1.20 

Maximum Hertz 
stress, 

psi 
0 250,000 
0 m,000 
0 350,000 

500. 000 
0 550,000 

0 650,000 
A 6 0 0 , ~  

I I I I I I  1- 
2 4 6 8 1 0  20 

(b) Cold-pressed alumina. 

4 t 1 I I 1 1 1 1 1 1  I I I I l l l l l  

.1 . 2  .4 .6 .8 1 2 4 6 8 10 .1 . 2  . 4  .6 .8 1 
Specimen life, millions of stress cycles 

(a) Hot-pressed alumina. 

Figure 3. - Rollin -contact life of alumina ball specimens in five-ball fatigue tester. Shaft speed, 950 rpm; contact angle, d; race 
temperature, 80% F; lubricant, mineral oil. 
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7 . O X l d  

6.5 1 
5.5 6*ol 

Figure 4 a r e  p l o t s  of 
t he  l o g  of s t r e s s  aga ins t  
t h e  log  of t he  10- and 50- 
percent l i v e s  f o r  both hot-  
and cold-pressed alumina. 
"hese p l o t s  show t h a t  l i f e  
va r i e s  inversely with s t r e s s  

from 6 . 0  t o  8 .1  f o r  the  
cold-pressed alumina and 
from 9 . 4  t o  10.8 f o r  the  hot-  
pressed alumina. (A  commonly 
accepted range f o r  t h i s  ex- 
ponent f o r  bearing s t e e l  i s  
from 9 t o  10.) Hot-pressed 
alumina, theref  ore, shows 
about t h e  same s e n s i t i v i t y  
t o  s t r e s s  as t h a t  which i s  
usual ly  associated with bear- 
ing s t ee l s .  The cold-pressed 
mater ia l  appears l e s s  sensi-  
t i v e  t o  s t r e s s  than e i t h e r  
the  hot-pressed alumina or 
the  bearing s t ee l s .  

Inverse variation of life with 
stress raised to a power, 

(LIIL2) - ( S 2 1 S p  

o 10-percent life r a i s e d  t o  a power ranging 
50-percent life 

' 
(a) Hot-pressed alumina. 

' ' I I I I ' - 1 1  1 I I 

I I I 1 1 1 1 1 l  Fai lure  Appearance 
2 4 6 8 1 0  

2.0 I I I 1 1 1 1 1 1  
. I  . 2  . 4  . 6  .8 1 

Specimen life, millions of stress cycles 

(b) Cold-pressed alumina. 
Typical f a i l u r e  p i t s  i n  

alumina t e s t  b a l l s  a r e  shown 
Figure 4. - Stress-life relation of hot- and cold-pressed alumina ball specimens i n  f igu re  5. These p i t s  

were shallow, eroded a reas  
averaging about 1 m i l  deep 
and were unlike the  deeper 

i n  five-ball fatigue tester. Shaft speed, 950 rpm; contact angle, 20'; race 
temperature, 80' F; lubricant, highly refined naphthenic mineral oil. 

f a t igue  s p a l l s  observed i n  bearing s t e e l s  and a crys ta l l ized-g lass  ceramic 
( r e f .  4 ) .  

Since the  t e s t  specimens were inspected per iodica l ly  during a t e s t ,  it w a s  
possible  t o  observe the  progression of t he  f a i l u r e  p i t  t o  f u l l  t rack  width. 
When the  f a i l u r e - p i t  width w a s  equal t o  the  width of the  running t rack,  the  
t e s t  specimen w a s  considered f a i l ed ,  and the  t e s t  w a s  terminated. 

I n  near ly  a l l  t e s t s ,  t he  f a i l u r e  s t a r t e d  a t  a s m a l l  p i t  i n  the  o r i g i n a l  
b a l l  surface and progressed i n  s i ze  t o  the f u l l  t r ack  width. These s m a l l  p i t s  
can be seen i n  f igu res  5 ( a )  and ( b )  i n  the  a reas  outside the  running t rack .  
The p i t s  or pores i n  the  o r ig ina l  surface of the  cold-pressed alumina 
( f i g .  5 ( b ) )  were several  t imes l a rge r  than those i n  the hot-pressed alumina 
( f i g .  5 ( a ) ) .  

The progression of the  pores or p i t s  t o  ful l - t rack-width p i t s  w a s  a slow, 
erosive process f requent ly  consuming one-half t he  t o t a l  running time of t he  
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Runn ing  
track 

(a) Hot-pressed alumina. Race temperature, 800 F; maximum 
Hertz stress, 500,000 psi; specimen life, 4.4~106 stress 
cycles. 

Runn ing  
track 

( c )  Hot-pressed alumina. Race temperature, 7000 F; maximum 
Hertz stress, 550,000 psi; specimen life, 0.24~106 stress 
cycles. 

(b) Cold-pressed alumina. Race temperature, 88 F; maximum 
Hertz stress, 300,000 psi; specimen life, 2.6~106 stress 
cycles. 

(d) Cold-pressed alumina. Race temperature, 7000 F; maximum 
Hertz stress, 300,000 psi; specimen life, 0.17~106 stress 
cycles. 

Figure 5. -Typical fa i lure pit on alumina test ball specimens. X65. 

specimen. 
s tages  of progression when the l a r g e s t  p i t  reached the  width of t he  running 
t rack.  

I n  near ly  every t e s t ,  several  smaller f a i l u r e  p i t s  were a t  var ious 

Fa i lure  Mechanism 

An examination by l i g h t  microscopy a t  1500 diameters t o  determine the  mode 
of f a i l u r e  w a s  made of alumina specimens cut  t ransverse ly  through the  f a i l u r e  
p i t .  N o  cracks were observed t h a t  would ind ica te  the  i n i t i a t i o n  of f a t igue  i n  
a manner s i m i l a r  t o  t h a t  f o r  bearing s t ee l s .  Since both t e s t  mater ia ls  exhib- 
i t e d  considerable porosi ty ,  t h e  p o s s i b i l i t y  e x i s t s  t h a t  crack propagation over 
very short  d i s tances  may occur. The pores  i n  the  mater ia l  under repeated 
s t r e s s e s  may both i n i t i a t e  and terminate cracks with t h e  r e s u l t  t h a t  small 
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pieces  a r e  sporadical ly  lost from an e x i s t i n g  surface p i t  until i t s  s i ze  i s  
such t h a t  it equals t he  width of t he  track. The p r o b a b i l i t y  of t h i s  type of 
f a i l u r e  mechanism occurring i s  supported by the  f a c t  t h a t  (1) pores o r  voids 
e x i s t  i n  both hot- and cold-pressed alumina, ( 2 )  i n i t i a l  surface p i t s  ex is t  
t h a t  eventual ly  grow i n t o  f a i l u r e  p i t s ,  and (3)  growth of t he  f a i l u r e  p i t  i s  a 
r e l a t i v e l y  slow process. 

Effect  of Temperature 

One group of specimens of each mater ia l  w a s  run a t  a race temperature of 
700' F a t  maximum Hertz s t r e s ses  of 550,000 and 300,000 p s i  f o r  hot-  and cold- 
pressed alumina, respect ively.  !The r e s u l t s  of these  t e s t s  a r e  p l o t t e d  on 
Weibull coordinates i n  f igu re  6. The l i n e  shown through the a r ray  of po in ts  i n  
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3 .- 
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l i fe  at 700' F 
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4 I 1 _ 1  I I I 
.M .06 .08.1 . 2  .4 .6 .8  1 2 4 .04 .06 .08.1 

Specimen life, mi l l ions of stress cycles 

(a) Hot-pressed alumina. Maximum Hertz stress, 550,000 psi. (b) Cold-pressed alumina. Maximum Hertz stress, 300,000 psi. 

Figure 6. - Effect of 700' F race temperature on l i fe  of alumina ball specimens in five-ball fatigue tester. Shaft speed, 950 rpm; contact 
angle, 20'; lubricant, h igh ly  ref ined napthenic mineral oil; viscosity at 80' F, 150 centistokes; viscosity at 700' F, 0.6 centistokes. 

f igu re  6 ( a )  does not include the s ing le  f a i l u r e  a t  2.4X106 s t r e s s  cycles.  This 
da ta  point  w a s  considered s t a t i s t i c a l l y  as a t e s t  suspension ( r e f .  5);  however, 
i f  t h i s  point  i s  included, the  l i n e  obtained by the  method of l e a s t  squares i s  
the  dashed l i ne .  

I n  addi t ion  to t he  experimental l i f e  a t  700' F, f igu re  6 shows the  exper- 
imental l i f e  a t  SOo F ( a t  the same s t r e s s )  and the  predicted l i f e  a t  700° F. 
The accepted r e l a t i o n  between l i f e  L and lubr icant  v i s c o s i t y  p i s  L = Kpn 
where K i s  a constant and n = 0.2 t o  0.3 ( r e f s .  6 and 7 ) .  If the  SOo F l i f e  
were adjusted t o  700' F by the  r e l a t i o n  
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a l i f e  within the  range indicated i n  f igu re  6 would be expected. The experi-  
mental l i v e s  at 700' F f o r  both hot-  and cold-pressed alumina f a l l  within or  
c lose  t o  t h i s  predicted range. Although the  v i s c o s i t y - l i f e  r e l a t i o n  w a s  ob- 
ta ined  i n  fa t igue  t e s t s  with s t e e l s  where the  f a i l u r e s  were la rge ly  subsurface 
i n  or igin,  t he  r e l a t i o n  appears t o  apply t o  the  surface-fai lure  l i f e  i n  alumina 
as well. 
the  v i s c o s i t y  of the  lubricant .  These r e s u l t s  could be expected since the  
physical p roper t ies  of alumina do not change appreciably i n  t h i s  temperature 
range. The appearance of t he  f a i l u r e  p i t s  i n  the  700° F t e s t s  ( f i g s .  5 ( c )  and 
( a ) )  w a s  similar t o  those a t  80' F. 
f igu res  5 ( c )  and ( d )  i s  a deposi t  from the mineral o i l  lubricant .  

Thus, the  shorter  l i f e  a t  700' F may be accounted f o r  by changes i n  

The dark mater ia l  bordering the  t r ack  i n  

Load Capacity 

Since the  two types of alumina were t e s t e d  a t  d i f f e ren t  s t resses ,  d i r e c t  
comparisons of l i v e s  were not made. The two mater ia l s  a r e  compared on the  
b a s i s  of load capacity,  ( the  contact load i n  pounds tha t  w i l l  produce f a i l u r e  
of 10 percent of a group of t e s t  specimens i n  1 mil l ion  s t r e s s  cyc les ) .  The 
experimental c a p a c i t i e s  of the two mater ia ls  m e  tabulated i n  t ab le  11. The 
capaci ty  of l/Z-inch-diameter hot-pressed alumina b a l l s  a t  80° F averaged about 
31 pounds and t h a t  of the  cold-pressed alumina b a l l s  about 4 .3  pounds. 

The rol l ing-contact  fa t igue  l i f e  of a t y p i c a l  vacuum melt M-lbear ing  
s t e e l  t e s t e d  under s i m i l a r  conditions i s  shown i n  f igu re  7 ( r e f .  8 ) .  This 

s e r i e s  of s t e e l  b a l l s  exhibited a 
load capaci ty  of about 450 pounds. 
Thus, a t  80' F the hot-pressed a lu-  
mina b a l l s  have only one-f i f teenth 
the load capacity of a t yp ica l  
bearing s t e e l  and approximately 
seven times tha t  of cold-pressed 
alumina. The capaci ty  of hot -  
pressed alumina a t  80° F i s  about 
15 percent grea te r  than  tha t  of a 

( r e f .  4 ) .  

v) 

E .- 
K m  
c 0 c r y s t a l l i z e d  g l a s s  ceramic 

A decrease i n  load capacity 
v) w a s  observed when the  race temper- 

a ture  w a s  increased from 80° t o  
- 
I m 

I I I 1 1 1 1 1 1  I I l l l l l l l ~  700' F. This decrease (38- and 73- 
2 1  2 4 6 8 1 0  20 40 60801M1 200 percent f o r  hot-  and cold-pressed 

Specimen life, millions of stress cycles 

Figure 7. - Rolling-contact fatigue life of A I S 1  M-1 steel ball 
spoclmens In five-ball fatigue tester. Shafl speed, 10,OOO rpm; 
contact angle, 200; race temperature, 145' F; lubricant, syn- 
thetic dleder; maxlmum Hertz stress, 800,oOO psi; failure 
index, 13 out of 21 (data from ref. 8). 

alumina, respec t ive ly)  as previ-  
ously discussed i s  believed t o  re -  
sult from the  decrease i n  lubr icant  
v i s c o s i t y  due t o  an increase i n  
temperature. 
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Rolling-Contact Tests  a t  2000' F 

Several  alumina b a l l  specimens were run i n  a modified f i v e - b a l l  f a t igue  
t e s t e r  a t  2000° F with MoS2-argon m i s t  lubr ica t ion .  
shaf t  speed of 450 rpm, a contact angle of 20°, and maximum Hertz s t r e s ses  of 
270,000 and 341,000 ps i .  

Tests  were performed a t  a 

The r e s u l t s  of these  t e s t s  a r e  shown i n  t a b l e  111. 

TABLE 111. - RESULTS WITH HOT- A.NE COLD-PRESSED ALUMINA BALL SPECIMENS RUN 

AT 2000° F IN MODIFIED FIVE-BALL FATIGUE TESTFR 

[Shaf t  speed, 450 rpm; con tac t  angle ,  ZOO; l u b r i c a t i o n ,  molybdenum d i s u l f  ide-argon mist .  3 

r e s t  

~ 

1 

2 

3 

4 

Test  b a l l  
m a t e r i a l  

Cold- 
p re s sed  
alumina 

Hot - 
pres sed  
alumina 

Cold- 
p r e s  sed 
alumina 

Hot- 
pressed 
alumina 

Maximun 
Hertz 

s t r e s s ,  
p s i  

270, OOC 
~ 

341,000 

341,000 

~ 

341,000 

T o t a l  
s t r e s s  
c y c l e s  

LO1,OOO 

190,000 

40,500 

ai, ooo 

Test 
time , 
min 

15 

45 

75 

60 

120 

140 

30 

60 

Change i n  su r face  cond i t ions  of t r a c k  

No change. 

No change. 

Shallow p i t t i n g  covering about 50 pe rcen t  of t r a c k  
width i n  about 15 pe rcen t  of t r a c k  length .  

No change, except  f o r  s l i g h t  p o l i s h i n g  of t r a c k .  

Three p i t s  on t r a c k ,  each covering about 40 pe rcen t  
of t r a c k  width. 

One p i t  on t r a c k ,  equa l  t o  t r a c k  width ( s e e  f i g .  8 ( a ) ) .  

Shallow p i t t i n g  covering about 50 pe rcen t  of t r a c k  
width and about 10 pe rcen t  of t r a c k  l eng th  ( s e e  
f i g .  8 ( b ) ) .  

No change. Seve ra l  thermal  shock c racks  i n  a r e a s  
near t r a c k ;  t e s t  suspended. 

m e  p i t t i n g  i n  hot-pressed alumina a t  2000' F c lose ly  resembled the  f a i l u r e  
p i t s  produced i n  the  lower temperature t e s t s .  
of t he  p i t  t h a t  occurred i n  t e s t  2 ( t a b l e  111). 

Figure 8 ( a )  i s  a photomicrograph 

A photomicrograph of a port ion of the t r a c k  of the  cold-pressed alumina 
b a l l  t e s t ed  under i d e n t i c a l  conditions ( t e s t  3) i s  shown i n  f igure  8 ( b ) .  This 
t e s t  w a s  stopped a t  t h i s  po in t  because it w a s  apparent t h a t  a general  t rack  
breakdown w a s  occurring. The f a i l u r e  p i t  had not ye t  reached f u l l  t r ack  width 
when it became excessively long i n  the  d i r e c t i o n  of t he  track. This f a i l u r e  
process, a l s o  observed i n  t e s t  1, was unlike t h a t  obtained with cold- and hot-  
pressed alumina a t  80' and 700' F o r  hot-pressed alumina a t  2000' F. 

A s  shown i n  t a b l e  111, the  hot-pressed alumina had been subjected to about 
f i v e  times as many s t r e s s  cycles  as the cold-pressed alumina when the  f a i l u r e s  
occurred. Although both specimens were t e s t e d  a t  a maximum Hertz s t r e s s  of 
341,000 ps i ,  t he  two t e s t s  should not be d i r e c t l y  compared because of t he  
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Runn ing  
track 

(a1 Hot-pressed alumina. Maximum Hertz stress, 341,000 psi; (b) Cold-pressed alumina. Maximum Hertz stress, 341,000 psi; 

Figure 8. -Typical fa i lure pits on  a lumina ball specimens. Temperature, 2,008 F. X65. 

specimen life, 0.19~106 stress cycles. specimen life, 0.04~106 stress cycles. 

pecu l i a r  f a i l u r e  on t he  cold-pressed spec h e n .  

These l imi t ed  t e s t s  do show, however, t h a t  alumina can be operated under 
rol l ing-contact  conditions a t  2000° F. Furthermore, hot-pressed alumina w a s  
superior t o  cold-pressed alumina a t  2000° F as wel l  as a t  lower temperatures. 
(The number of t e s t s  a t  2000° F w a s  l imi t ed  because of t h e  l i m i t e d  number of 
b a l l  specimens from t h e  same batch of mater ia l .  ) 

SUMMARY OF RFSULTS 

Surface f a i l u r e  t e s t s  i n  r o i l i n g  contact  were conducted with groups of 
hot-  and cold-pressed alumina b a i l  specimens of r e l a t i v e l y  high p u r i t y  i n  t h e  
f i v e - b a l l  f a t i g u e  t e s t e r .  These t e s t s  were conducted a t  a contact angle of 
Z O O ,  a sha f t  speed of 950 rpm, a t  race  temperatures of 80' and 700' F, a t  max- 
imum Hertz s t r e s s e s  of 250,000 t o  S50,OOO p s i  and with a mineral o i l  lubr icant .  
Support b a l l s  were 52100 and M-50  s t e e l  in t h e  80' and 700' F t e s t s ,  respec- 
t i v e l y .  
b a l l  f a t i g u e  t e s t e r .  Both hot-  and cold-pressed alumina b a l l s  were run t o  
fa i lure  a t  a contact  angle of ZOO, a sha f t  speed of 450 rpm, and at maximum 
Hertz s t r e s s e s  of 270,000 and 341,000 p s i  with MoSZ-argon m i s t  l ub r i ca t ion .  
Support b a l l s  were 1/Z-inch-diameter hot-pre ssed alumina. 

Preliminary t e s t s  were a l s o  conducted a t  2000° F i n  a modified f i v e -  

The following r e s u l t s  were obtained: 

1. The f a i l u r e s  i n  ho t -  and cold-pressed alumina were very shallow eroded 
areas approximately 1 mil deep and were unlike f a t i g u e  p i t s  found i n  bearing 
s t e e l s  or a c r y s t a l l i z e d  g l a s s  ceramic. 

2. Progression of an inc ip i en t  failure t o  a f u l l - s i z e  fa i lure  f o r  both t h e  
hot-  and cold-pressed alumina w a s  a slow process, f requent ly  consuming one-half 
of t h e  t o t a l  running time of t h e  specimen. 
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3. The load-carrying capaci ty  a t  80' F of hot-pressed alumina b a l l s  i s  
seven t i m e s  g rea t e r  than t h a t  of cold-pressed alumina. The capaci ty  of t he  
hot-pressed alumina bal ls  i s  about one-f i f teenth t h a t  of M - 1  bearing s t ee l  
b a l l s  tested under similar conditions. 

4. Increasing t h e  race temperature from 80' t o  700' F resulted i n  a re- 
duction i n  capaci ty  f o r  t h e  hot-  and cold-pressed alumina of 38 and 73 percent,  
respect ively.  The reduct ion w a s  a t t r i b u t e d  t o  t h e  decrease i n  v i s c o s i t y  of t h e  
l u b r i c a t i n g  f l u i d  a t  t h e  elevated temperature. 
w a s  s imi l a r  t o  t h a t  a t  room temperature f o r  both t h e  hot-  and cold-pressed 
alumina. 

F a i l u r e  appearance a t  700' F 

5. The l i f e  of hot-pressed alumina a t  80' F with mineral o i l  l u b r i c a t i o n  
var ied inversely with s t r e s s  r a i s e d  t o  a power t h a t  ranges from 9 . 4  t o  10.8 
exhibi t ing about t h e  same s t r e s s - l i f e  s e n s i t i v i t y  as t h a t  f o r  bearing s t e e l s ;  
i n  cont ras t ,  t h e  l i f e  of cold-pressed a l d n a  w a s  found t o  vary inversely with 
stress r a i s e d  t o  a power t h a t  ranges from 6.0 t o  8.1. 

6. Preliminary t e s t s  a t  2000' F and a maximum Hertz stress of 341,000 p s i  
with molybdenum disulf ide-argon mist l u b r i c a t i o n  ind ica t e  t h a t  alumina i s  capa- 
b l e  of s a t i s f a c t o r y  rol l ing-contact  operation under these conditions.  

7.  The fa i lure  appearance i n  hot-pressed alumina a t  2000' F w a s  s i m i l a r  t o  
t h a t  a t  80° F. 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, February 13, 1964 
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